

3,569,956

" f
IE z

INVEN'TOR.
JAMES 0. DUFFY

B

ATTORNEYS

SMEEV 2 OF 3

CODE

CODE

P
LSB
-

M S B

WSB

I NVEN‘TOR.
JAMES 0. DISFFY

3,569,956

INVENTOR.
S 8 . DUFFY

B

[72] inventors T . 0 . P

[21] Appl. No. 771,"r@
[22] Filed Oct. 39,1968
1451 Patented P~EIE" . 9,1971

AE LOGHC BLOCK ENCODE

[5 2] U.S. C% .. 3401347
.. B@)3 k 13/24
h .. 3401347;

179/15 (OR), (§E), (APC), (ASYNC); 235192
(70)

t561 Refereaces Cited
UNITED STATES PATENTS

3,025,350 311962 Lindner 179/15(O)
3,030,614 4/!962 Lehan et al 340/347X
3,413,452 11/1968 Schlein 235/92

OTHER REFERENCES
W. Peterson, Error-Correcting Codes, 1961, pp: 73- 77;

M. 1. T. Press.
S. Golomb, Digital Conimunications: With Space Applica-

tions; ' I Introduction to Digital Communications," Prentice-

Primary Examiner-Maynard R. Wilbur
Assistant Examiner-Michael K. Wolensky
Attorneys-J. H. Warden, Monte F. Mott and G. T. McCoy

Hall, 1 9 6 4 , ~ ~ : 8- 13.

ABSTRACT: AFI encoder incorporating a minimum number
of logic circuits to convert 64 6-bit data words into 64 32-bit
code words, forming a 32,6 biorthogonal code. Each code bit,
generated during a multiclock-period-code-bit-period, is logi-
cally combined, at the end of the code bit period, with a code
bit of a comma free vector code to produce a code bit of a
code word in a 32,6 comma free biorthogonal code. The en-
coder implements an algorithm in accordance to which each of
the six data word bits is incorporated in a modulo-2 summa-
tion, as a function of the code-bit number and number of logic
ones in the code-bit number in binary form.

P
I

i4
M

N

... I 's2 --t-
i &

f 0
(PAGES),

i /
(NASA CR OR TMfOW AD NUMBER)

CODE

.CODE

3.5 48,956

as compared with other encoders designed to generate a
comma free 32,6 biorthogonal code.

A further object of the present invention is to provide novel
circuitry for generating bits of code words of a biorthogonal
code with a minimum of logic elements.

These and other objects of the invention are achieved by
providing circuitry, incorporating a minimum number of logic
elements, to serially generate the bits of a code word as a func-
tion of the bits of the data word which the code word is to
represent and the number of the code bit in the code word.
Briefly, the circuitry implements an algorithm which was
discovered during a thorough analysis of the 32, 6
biorthogonal code. Based on this algorithm, the logic circuitry
operates during each of six successive clock periods, defining
a code-bit period, to provide an output which is either a one
(1) or a binary zero (O), depending on the bits of the data
word and the number in binary form of the code bit, in the 32-
bit code word. The code bit is then logically combined with a
bit of a comma free vector code, generated by an appropriate
code generator to produce the desired code bit of a code word
of a comma free 32,6 biorthogonal code.

The novel features of the invention are set forth with par-
ticularity in the appended claims. The invention will best be
understood from the following description when read in con-
junction with the accompanying drawings.

1
AL LOGIC BLOCK LNCO

ORIGIN OF THE INVENTION

The invention described herein was made in the per-
formance of work under a NASA contract and is subject to the
provisions of Section 305 of the National Aeronautics and
Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC
2457).

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to encoders and, more par-

ticularly, to an encoder for generating a n, m biorthogonal
code, where n=2('"I1) with a minimum of logic circuitry.

2. Description of the Prior Art
The relative merits of block encoding for a digital communi-

cation channel are well known. Briefly, to decrease communi-
cation error due to noise, multibit data words are transmitted
as multibit code words, where the number of bits of each code
word is significantly greater than the number of bits of the cor-
responding data word. Herebefore, in some of the space ex-
ploration communicative applications, biorthogonal and
comma free biorthogonal codes have been generated by ap-
propriate encoders in order to transmit 6-bit data words as 32-
bit code words.

In designing an encoder for such purposes, as well as in
designing other logic circuitry, designers often strive to
minimize the conceptual complexity of the implementation,
often at the price of an increased number of required elements
such as logic gates and related components. Such a design may
be thought of as one employing a brute force approach. For
space exploration applications however, where weight and
size are often of primary consideration, circuits with fewer ele-
ments are generally desired even at the price of increased
complexity. The present invention is directed to provide en-
coders, designed to generate a comma free biorthogonal
Reed-Muller type code, by means of which 64 6-bit data
words are converted for communication purposes into 64 32-
bit code words.

OBJECTS AND SUMMARY OF THE INVENTION

It is primary object of the present invention to provide a
new encoder for generating a comma free n, m biorthogonal
code, where n = 2(m11).

Another object of the present invention is the provision of
an encoder incorporating a reduced number of logic elements

5

10

15

20

25

30

35

40

45

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a table of the binary states of stages of a comma
free vector code generator, during 32 successive states;

FIGS. 2 through 6 are logic block diagrams of a specific em-
bodiment of the invention;

FIG. 7 is a table useful in explaining the content of stages of
registers shown in FIGS. 2, 3 and 5 during six clock periods,
defining each code bit period; and

FIG. 8 is a table useful in explaining the counting operation
performed by the circuitry of FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before proceeding to describe the logic circuitry of the
novel encoder of the present invention, reference is first made
to the following Table 1 containing a block encoder 32, 6
biorthogonal code dictionary of 64 32-bit code words cor-
responding to the 64 6-bit data words. This table is presented
as one example of an n, m biorthogonal code wherein n = 32
andm=6.

TABLE 1

Data Word Biorthogonal Code Word

f e d c b a 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 0

n o n o n n n n n n

o n 0 1 1 o n n 1 1

0 0 1 1 o o o o n o
0 0 1 1 0 1 0 1 0 1
0 0 1 1 1 0 0 0 1 1
0 0 1 1 1 1 0 1 1 0

0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 1 0 1 1 0
0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1
0 1 0 1 1 0 0 0 1 1
0 1 0 1 1 1 0 1 1 0
0 1 1 0 0 0 0 0 0 0

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 . 1 1
1 0 1 0
1 1A"O 0

81: :
o ir. o I
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1
1 1 1 1
1 0 1 0

0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0

0
1
0
1
1
0
1
0
1
0
1
0
0
1
0
1

0
0
1
1
1
1
0
0
1
1
0
0
0
0
1
1

0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0 0 0
1 0 1
0 1 1
1 1 0
1 1 1
0 1 0
1 0 0
0 0 1
0 0 0
1 0 1
0 1 1
1 1 0
1 1 1

1 0 0
0 0 1

0 1 0

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

0 0 00
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1

1 0 0 1
1 1 1 1

1 0 0 1
0 0 00
0 1 0 1
0 0 11
0 1 1 0

1 0 1 1 00 10

1 0 1 1 00 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1
0 1 1 0 1
1 1 1 1 1
1 0 1 0 1
1 1 0 0 1
1 0 0 1 1

1
1
1
1
1
1

o I o 1 1 o 1 o I n i o i o 1 0 i o 1 0
1
0
1
0
1
0
1
0
1
0
1
0

0
0
1
1
0
0
1
1
0
0
1
1

0
1
1
0
0
1
1
0
0
1
1
0

1
1
0
0
0
0
1
1
1
1
0
n

1 0 0
0 0 1
0 0 0
1 0 1
0 1 1
1 1 0
1 1 1
0 1 0
1 0 0
0 0 1
0 0 0
1 0 1

1 1 0 0 1 0 0 1

1 1 1 1
1 0 1 0
1 1 0 0
I 0 0 1
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
0 0 0 0
0 1 0 1

1 1 0 0
1 0 0 1
0 0 00
0 1 0 1
0 0 1 1
0 1 1 0
0 0 00
0 1 0 1
0 0 11
0 1.10
1 1 1 1
1 0 1 0

3,s 69,956

TdBLE 1-Contlnurd

Data Word Bioi thogonal Code Word

f e d c b a 31 30 2‘1 28 ST 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 Y 8 7 G 5 4 3 2 1 0

0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1--1-1-00
0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1

1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1

0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 0 0
0 0 0 1 o 1 n 1 n
0 0 0 1 1 1 1 1 1
o 0 1 0 0 i 0 0 i
0 0 1 0 1 1 1 0 0
0 0 1 1 0 1 0 1 0
0 0 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 1
0 1 0 0 1 1 1 n o
o i o 1 O i 0 i 0
0 1 0 1 1 1 1 1 1
0 1 1 0 0 1 0 0 1
0 1 1 0 1 1 1 0 0
0 1 1 1 0 1 0 1 0
0 1 1 1 1 1 1 1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0 1
0 0
1 0
1 1
0 1
0 0
1 0
1 1
0 1
0 0
1 0
1 1
0 1
0 0
1 0
1 1

1 1 0 - 0
1 0 0 1

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

1 1 0 0
1 0 0 1

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

0 0 1 1
0 1 1 0

1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

1 1 0 0
1 0 0 1

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0

1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

1 0 0 1 1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 1 1 1 0 0 1 1 0 0
0 1 0 1 1 0 1 0 1 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 0 1 0 0 1
1 1 0 0 0 0 1 1 1 1 0 0
1 0 1 0 0 1 0 1 1 0 1 0
1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0

i n 1 0 i o 1 0 0 1 0 1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

1
0
1
0
0
1
0
1
1
0
1
0
0
1
0
1

1 0
1 1
0 1
0 0
0 1
0 0
1 0
1 1
1 0
1 1
0 1
0 0
0 1
0 0
1 0
1 1

0 1
0 0
0 1
0 0
0 1
0 0
0 1
0 0
1 0
1 1
1 0
1 1
1 0
1 1
1 0
1 1

1 9
1 1
0 1
0 0
1 0
1 1
0 1
0 0
0 1
0 0
1 0
1 1
0 1
0 0
1 0
1 1

1 0 0 1
1 1 0 0
1 0 1 0

0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

0 1 1 1 1 0 1 1

The letters a through f are used to designate the six bits of
each data word and numerals 0 through 3% designate the 32
code bits of each code word. An analysis of the dictionary in-
dicates that a definite algorithm can be used to obtain the bits
of each code word from the six bits of the data word with
which it (the code word) is associated. Using the designations
Q throughfand 0 through 31 it may be shown that,

-OLa@b @ c @ d e e
i=bac@dC&e@f
2=a@ c@ d @ e @ f
3=c@d@e
4 = a f B b @ d @ e @ f

,
30=a
31=f
That is, the code bit 0 is binary 1 only if the modulo5 sum

of bits a, b, c, d and e of the data word is a binary 1. The con-
ventional sign @ represents modulo- 2 addition. Likewise, the
code bit 1 is a binary 1 only if the modulo-2 sum of data bits b,
c, d, e andfis a binary 1.

The complete pattern is shown in the following table 2 in
which the x’s represent the bits Q through f of the data word
which are included in forming the modulo-2 summing logic
operation. - - -_ -. -

TABLE 2

Biorthog- Modulo 2 sum of-
onal code

bitnumber f e d c b a

ooooo= 0
m1= 1
oOolO= 2
oOo11= 3
00100= 4
00101= 5
00110= 6
00111= 7
OloOo= 8
01001= 9
01010 = 10
01011=11
01100=12
oiini=i3
01110=14
01111=15
1 M M O = l G
10001=17

_.__ x
x x
x x
-. x
x x

_ - _ - x
.- x
x x
x x
-. x
.-_- x
x x

_ - _ - x
x x
x x

_ - _ - x
x _-.

X X X X
x x x
x x _-_. x
x x _ - _ _
x ...- x x
x -... x
x ...-._._ x

_-__.__-.-__
.x x x x
..x x x

T A B L E 2 -Continued

&onhog- Modulo 2 sum of-
onal code
hitnumher f e d c b

10010=18 _ _ _ _ _ _ _ - x x - -_ - x
10011=19 x __._ x x --.-
10100=20 _ _ _ _ _ _ _ _ x - - - - x x
10101=21 x _ _ _ _ x _- - - x
ioiin=zz x ..- x ______._ x

lllW=28 x _ _ _ _ _ _ _ _ _ _ _ - X x
11101=29 ______...._._ _._ x
11110=30 _.____.__..______.._ x
11111=31 x _ _ .______ ~ _ _ _ _ _ _

From Table 2 it can be seen that the a data bit enters into
the modulo-2 sum of all even numbered code bits (0,2,4 etc.)
and in none of the odd numbered code bits (1, 3 etc.).
Likewise, data bit b enters into the mod-2 sum of the first two
(such as 0 and 1 or 4 and 9) of each group of four code bits
(such as 0 through 3 or 4 through 7), data bit c for the first
four (0 through 3) of each group of eight code bits (such as 0
through 7), data bit d for the first eight (0 through 7 or 16
through 23) for each group of sixteen (0 through IS or 16
through 31), while data bit e for the first 16 (0 through 15) of
the 32 code bits. The algorithm for data bitfmay be seen to be
dependent on the number of binary zeros in the binary form of
the code bit number. Data bit fenters the modulo-2 sum of
each code bit which in binary form has an even number of
zeros (0’s). Thus, for example, it enters the mod402 sum for
code bits % , 2 and 4, since these code bit numbers have binary

@BO and 00100, each one of which has an
even number of 0’s.

The principles of this algorithm may be applied to provide
other n, m biorthogonal codes in which n and m assume values
other than 32 and 6 respectively. For example, a 64, 7
biorthogonal code can be produced with the same algorithm.
In such a case, the first five bits (starting with the least signifi-
cant) of the data word will enter into the mod-2 summation as
herebefore described. The sixth bit (or second most signifi-
cant bit) will enter the mod-2 summation of the first 32 (5-
-38) of the 64 code bits, while the seventh or most significant
bit will enter the mod-2 summation as a function of the
number of 0’s in the code bit number binary form, in a manner
similar to bitf, herebefore described.

In accordance with the teachings of the present invention,
the algorithm or pattern shown in Table 2 is implemented by
storing the input data word in a data shift register and by con-
taining the code bit number, in binary representation, in a shift
register binary counter, hereafter also referred to as the code 5
bit number shift register. The contents of the two registers are
cycled around once every code bit period, in a way which will
be described hereafter in detail, so that at the end of each
period, the binary or logic output of one set of modulo-2 ad-
ders, which is associated with the two registers, represents one 10
of the code bits, of a code word of the biorthogonal code. This
code bit is modulo-2 added to a bit of a fixed 32-bit comma
free vector code to produce the desired code bit of a code
word of the comma free biorthogonal code.

The comma free vector code is generated by a 5-bit shift re-
gister with modulo-2 feedback logic, one example of which
will be described hereafter in detail. The example of a comma
free vector code which may be generated is shown in FIG. 1 in
which the 1's and 0's under the columns headed by V, W, X, Y 2o
and 2 represent the binary states of flip-flops V, W, X, Y and
Z of a 5-bit vector code shift register, during code bit periods
0 through 31 when code bits 0 through 31 of the desired code
word are generated. The code bit in the comma free
biorthogonal code is obtained by modulo-2 summing the Z bit 25
with the code bit of the biorthogonal code. The complete dic-
tionary of the comma free biorthogonal code is included in the
following Table 3.

Reference is now made to FIGS. 3 through 6, which
represent block diagrams of different portions of the encoder
circuitry of the present invention. FIG. 2 is a block diagram of
a six-stage shift register 20 consisting of flip-flops A, B, C, D, E
and F, and three control input gates 21,22 and 23. The gates
control the entering of a new input data word designated
DATA into the register during a last of 32 code bit periods,
(when a flip-flop J, to be described hereafter in conjunction
with FIG. 4, is a binary one) during which the first code bit is
produced. The gates also control the cycling of the register
content during the other code bit periods, Le., when J is a bi-
nary zero.

FIG. 3 is a block diagram of code bit number shift register
30 in which the code bit number, in binary representation, is
stored in flip-flops P, R, S, T and U at the start of each code bit
period. Flip-flop I indicates whether bits should be inverted as
they are shifted around the end of the register 30, while gates
38,32 and 33 are inverter 38 invert or do not invert bits (in-
puts to flip-flop LJ) as indicated by flip-flop I. Gate 35 is used
to inhibit the shifting of the content in the register during the
transition between the fifth and sixth of six intervals or clock
periods, which define each code bit period.

FIG. 4 is a block diagram of a comma free vector code shift
register $0, comprising five flip-flops V, W, %, Y and Z
wherein the input to flip-flop V is a function of the modulo-2
sum of its output and the output of Z, while the input to W is
function of the modulo-2 sum of its own output and that of V2

TABLE 3

Data Word Comma-Free Biorthogonsl Code Word

f e d c b a 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 I1 10 9 8 7 6 5 4 3 2 1 0

o o n o o 0 1 0 0 n 1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0

1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
1 1 0 1
1 0 0 0
1 1 1 0
1 >TO 1 1

oq-0 0 1
4 8 1 0 0

py ; ;

$y ; ;
p i i p 0 0 0

; E ; ; ;
. Y O 1 1
1 1 1 0
1 0 0 0
1 1 0 1
0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0

1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
0 1 O C
0 0 0 :
0 1 1 1

* @ I 1
1 1 1 0
? b o 5
' 1 3 1

0 O O i
0 1 1 1
0 0 1 0

0 o r o

G I 0 0

1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0

1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0

1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0
0 1 0 0
0 0 0 1
0 1 1 1

1 0 1 1
1 1 1 0

1 1 0 1
1 0 1 1
1 1 1 0

1

a 0 1 0

l e 0 0

i 0 0 0
f 3 : : :
o p a l
c . 1 1
C O l O
@ i o 0
0 0 0 1
0 1 1 1
0 0 1 0

0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0

0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0

1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1

1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
0 0 1 0
0 1 1 1
0 0 6 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1

0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0
0 0 1 0
0 1 1 1
0 0 0 1
0 1 0 0

1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1
1 1 0 1
1 0 0 0
1 1 1 0
1 0 1 1

0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0
0 1 1 0
0 0 0 1
0 1 1 1
0 0 1 0
0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0
0 1 0 0
0 0 0 1
0 1 1 1
0 0 1 0

1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 0
1 0 0 0
1 1 0 1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

1 0 1
0 0 0
1 1 0
0 1 1
0 1 0
1 1 1
0 0 1
1 0 0
1 0 1
0 0 0
1 1 0
0 1 1
0 1 0
1 1 1
0 0 1
1 0 0

1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0

1 1 1 0 1 1 1 0

0 0 0 1 0 1 0 0

1 1 00
1 0 0 1

0 0 1 1
0 1 1 0
0 0 00
0 1 0 1
0 0 11
0 1 1 0
1 1 1 0 11 1 0

1 1 1 0 00 0 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

i o
0 1
1 1
0 0
1 0
0 1
1 1
0 0
1 0
0 1
1 1
0 0
1 0
0 1
1 1

1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

0 1 0
1 1 1
0 0 1
1 0 0
1 0 1
0 0 0
1 1 0
0 1 1
0 1 0
1 1 1
0 0 1
1 0 0
1 0 1
0 0 0
1 1 0
0 1 1

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 0 0
1 0 1 0
1 1 1 1

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 11
1 0 1 0
1 1 0 0
1 0 0 1
1 1 1 1
1 0 1 1 0 0 10

1 0 0 1
0 0 00
0 1 0 1
0 0 11
0 1 1 0

1 0 01
1 1 00
1 0 1 0
1 1 1 1
0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0
0 0 0 1 0 1 1 1

0 0 00
1 0 0 1
1 1 0 0
1 0 1 0
1 1 11

1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1 0
1 0 0 0 1 1 0 1 1 1
1 0 0 1 0 0 0 0 0 1
1 0 0 1 0 1 0 1 0 0
1 0 0 1 1 0 0 0 1 0
1 0 0 1 1 1 0 1 1 1
1 0 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 1 1 1
1 0 1 1 0 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 1 0 1 1 1

1 0 0
0 0 1
1 1 1
0 1 0
0 1 1
1 1 0
0 0 0
1 0 1
1 0 0
0 0 1
1 1 1
0 1 0
0 1 1
1 1 0
0 0 0
1 0 1

0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
i
1

1
0
0
1
1
0
0
1

0
0
1
1
0
C
1

1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0 1 1
1 1 0
0 0 0
i o 1
1 0 0
0 0 1
1 1 1
0 1 0
0 1 1
1 1 0
0 0 0
1 0 1
1 0 0
0 0 1
1 1 1
0 1 0

! I l l
L o l o
1 1 0 0
0 0 0 1
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

0 1 1 0
0 0 1 1
0 1 0 1
0 0 0 0
I O 0 1
1 1 0 0
1 0 1 0
1 1 1 1
1 0 0 1
1 1 00
1 0 1 0
1 1 1 1

0 1 0 1
0 0 0 0

0 0 0 1 1 0 1 1

3,569,856
7

The output of a gate 41 is used to shift the content of the re-
gister’s flip-flops during a specific clock period of the six
periods of each code bit period.

FIG. 5 is a simple shift register 50 consisting of three flip-
flops L, M and Pi, which are clocked by clock pulses from a 5
clock 52. The function of register 58 is to divide each code bit
period into six clock periods, represented by six unique com-
binations of the states of flip-flops L, M and N. These are
shown in the left-hand column of FIG. 7 to which reference is
made herein.

The clock 52 which is shown in FIG. 5, is not intended to be
part of the encoder disclosed herein. However, it is dia-
grammed in order to show the three outputs thereof required
to control the registers or gates shown in FIGS. 2 through 6. 15
Basically, the clock 52 has one output, designated CLOCK, at
which are provided clock pulses which are used to clock the

pointed out that the particular circuits are presented only as
an example of one embodiment of the invention. It should be
clear that other like circuits may be employed to practice the
teachings disclosed herein.

As stated previously, the function of flip-flops L, M and N of
register 50 of register 50 (FIG. 5) is to define, by the binary
states of E, M and N six discrete clock periods which together
define one code bit period. The six clock periods are shown, in
terms of the states of flip-flops L, M and N, in the left-hand

lo column of FIG. 7. During the first clock period when L, M and
N are all O’s, the least significant bit (LSB) of the data word, is
in the A flip-flop of data word register 20 (see FIG. 2) while
the next least significant bit is in flip-flop B, etc., so that the

nary form, and, at the same time, flip-flop P of the same re-
20 gister contains the least significant bit of the same number, in

binary form.
As should be apparent from columns A through F in FIG. 7,

while the clock @ 2/4 and @ 3/4 designation means that the the data word, contained in flip-flops A through F, is cycled
output line is high without slippage or “glitch” during the through the shift register 20 once every code bit period, so
second and third quarters of the clock period. These outputs 25 that during the sixth clock period (when L, Mand N are 081,
may be conveniently obtained by employing a conventional respectively) the most significant bit and the least significant
clock whose output is divided by four by a two-stage divide- bit are in flip-flops A and B, respectively. Consequently, dur-
by-four Johnson-type counter used in external shared count- ing the next clock period, namely the first clock period of the
down chain. next code bit period, the most significant bit and least signifi-

FIG. 4 is a block diagram of four separate flip-flops K, G, H 30 cant bit are against stored in flip-flops F and A, respectively.
and J, flip-flop G being associated with three inpht control The content of the flip-flops P through U is also advanced by

,62 and 63. Gate 62 is in turn controlled by the output one stage per clock period. However, since register 30, con-
of a clock-period-defining gate whose output, after being sisting of flip-flops P through U is only a five-stage shift re-
inverted by inverter 65, controls gate 68. Briefly, at the end of gister, and there are six clock periods per code bit period, one
each code bit period, the Q or true output of G is a logic 1 35 of the six clock pulses per code bit period must be disabled.
whenever the derived biorthogonal code bit is to be a 1. This is done by utilizing gate 35 (see FIG. 3) to disable the re-

Flip-flop H associated with three input control gates 64,67 gister 36) from advancing the content of its various stages
and 68 performs, at the end of each code bit period, the modu- therein, in response to the clock pulse supplied thereto.
10-2 addition of the biorthogonal code bit represented by the The binary counting produced by register 30 in conjunction
output of G and the comma free vector code bit represented 40 with the inversion-controlling flip-flop I, is accomplished by
by the output of flip-flop Z (see FIG. 4). Flip-flop K is used to using the following algorithm:
sense the number of binary zeros (0’s) in the code bit number, 1. Starting with the least significant bit, then the second least
in binary representation, which is necessary to determine significant bit, etc., change all ones to zeros until the first zero
whether thefdata bit is to be included in the modulo-2 sum- isdetected.
mation for the biorthogonal code bit. Flip-flop J is used to pro- 45 2. Change that zero to a one.
vide a true output during the last code bit period during which 3. Do not alter any of the bits in the subsequent, more signifi-
a new data word may be clocked into register 20, one bit per cant positions.
clock period, as well as to reset register 40 (see FIG. 4) to its The changing or inverting is controlled by flip-flop I and ac-
initialstateofQI?I% (in binaryform). complished by gates 38, 32 and 33. For a more complete ex-

Before proceeding to describe the operation of the logic cir- 50 planation of the implementation of the algorithm by means of
cuitry, shown in FIGS. 2 through 6, reference is first made to register 30 (flip-flops U through P), shift register §0 (flip-flops
the following lead designations which are used for the flip- L, M and N) and the flip-flop I, reference is made to FIG. 8
flops: S, = clocked set (active = high), C, = clocked clear which is in table form showing the binary states of the various
(reset), where the S, or C, inputs of any flip-flop are logically 55 flip-flops during the six clock periods of each of code bit num-
combined in an AND gate (not shown) in the flip-flop, S D = bers or periods 0, I, 1430 and 38. As seen therefrom, during
direct (asynchronous) set (active = low), CD = direct clear, code bit period 0, during the first clock period, a zero, in bi-
Clk = clock puke (negative transition), Q = “true” output nary form (0~0~@) is stored in the shift register consisting of U
which is assumed to be a logic 1 when the flip-flop is set and Q through P. In accordance with the algorithm, since P stores a
= “false” output. Input leads to the encoder are DATA, 60 0, during the next code period when L, M and M = 100, the
representing a data word, serially supplied bit by bit, and the zero (8) is changed to a one (I) and is stored in U and flip-flop
three outputs of clock 52, herebefore explained. A flip-flop I is reset (from 1 to a 8) . Thereafter, the content of U through
letter designation such as N represents a connection to the Q P is advanced at the end of each clock period (except at the
terminal of flip-flop N while a letter designation with bar end of the fifth), so that in the sixth clock period, when L, luf
above it such as represents a connection to N’s 0 terminal. 65 and N= 83, 0,1, respectively, U through P store the logic com-
The encoder output is designated CODE representing the Q bination of 00090. Then, at the start of the next clock period,
output of flip-flop H. is the complementary encoder representing the first clock period of the next code bit number
output. or period, the content of U through P is again advanced by one

The particular lead designations are for specific circuits stage, so that at the start of this code bit period a one, in binary
which were actually used in reducing the invention to prac- 70 form (80081) is stored in U through P. Also, flip-flop I is set
tice. The circuits used included low power diode transistor again to contain a logic one. This counting sequence continues
micrologic (LPDTME) integrated circuits of the type manu- until, at the end of code bit period number 31 when L, Mand
factured and sold by Fairchiid Semiconductor of Mountain- N are 0,O and 1, respectively, flip-flops U through P store the
view, Cal. These circuits are extensively described in copy- logic combination @@@@I. Consequently, when the next clock
righted publications of Fairchild Semiconductor. It should be 75 pulse is received, all zeros are stored in U through P to

3,569,956

represent, in binary form, a code bit number 0. period to enable, by means of gate 22 (FIG. 2), a new d a b
From the foregoing it should be seen that during the first word to be clocked in while at the same time resetting the

five of the six clock periods of each code bit period, the first comma free vector code generator (FIG. 4) to an initial
five bits of the data word, starting with the least significant bit state in order to produce during the next 32 code bit periods
are sequentially stored in flip-flop A. Whether the bit is a logic the desired comma free vector code as the output of Z.
1 or 0 is indicated at the output of gate 23 (see FIG. a) , the In the particular implementation shown in FIG. 6, the logic
output being represented by 8. Likewise, during the first five controlling flip-flop J is such that J will be reset during all code
clock periods of each code bit period, the various bits which bit periods except the 3 1st. This would normally be accom-
represent the code bit number, in binary form, are sequen- plished very simply using a s-input logic gate, but hardware
tially stored in flip-flop P whose binary state, is indicated by lo considerations dictated the use of 2-input gates. From FIG. 8
the output of gate 33 and is represented by the letter a. Since, it is seen that during the last five of the six clock periods of
as hereinbefore explained in conjunction with Table 2, the code bit 3% u, S and P are binary ones, implying that the CI,
decision to incorporate any of the data word bits in the modu- input of flip-flop J is a one, Le., C, is inactive, and the C, input
10-2 sum produce the bit in the biorthogonal code is a func- 15 is a ZERO, i.e., c, is inactive, meanwhile the s, input is active
tion of the code bit number, it is the outputs a and which are (logic one) Until the fifth clock period. When both of the sc
used to control the tog&g of flip-flop 6, during these clock and C, inputs are inactive at the clock negative transistion, the
periods. The output a is also supplied to flip-flop K whose state of the flip-flop is determined by which input was last ac-
function, in essence, is to count the number of logic zeros in tive. Thus, in the 3 1st. code bit period S, is active last, causing
the code bit number. 2o the 9 flip-flop to be set. This condition for setting the flip-flop

is not satisfied in any other code bit Deriods.
_ _

The manner in which the outputs a, /3 and the binary state
of flip-flop K are used to obtain the code bit in the
biorthogonal code, using flip-flop G and the gates 61 through
69 in- front of it, may now be explained. Briefly, at the start of
each cycle period, G is reset. It is wired to toggle whenever the 25
output of the OR gate 63 to the left of it is a logic one. That
gate is a 1 whenever any of the following conditions apply:
1. Data bit a is a one and the code bit number is even (i.e., a
and /3 are both one during L M N = 000).
2. Data bit bis a one and the code bit number is the first two of 30
a group of four (Le., a and /3 are both one during L M N =
100).
3. Data bit c is a one and the code bit number is the first four
of a group of eight (i.e., a and p are both one during L M N =
110). 35
4. Data bit d is a one and the code bit number is the first eight
of a group of 16 (Le., a1 and /3 are both one during L M N =
1 1 1) .
5 . Data bit e is a one and the code bit number is one of the first
16 (i.e.,aandPare bothoneduring L M N = O I I) .
6. Data bitfis one and the code bit number, in binary form,
has an even number of zeros (i.e., K is zero and p is one during
L M N = 001; the even number of zeros is indicated by the fact
that the K flip-flop, after the reset during L M N = 000, toggled 45
an even number of times in response to the a input).

If the OR gate 63, leading to G, has been a one an odd
number of times, G will have toggled accordingly and will be a
one at the end of the code bit period; the opposite is true if the
gate was one an even number of times.

Ignoring for the present the function of the comma free
code shift register 461 shown in FIG. 4 and the function of flip-
flop H in FIG. 6, from the foregoing it should be appreciated
that the algorithm, necessary to obtain a code word in the
biorthogonal code from a 6-bit data word is implementable 5 5
with a single set of modulo-2 adders (G and related gates).
This is true since the modulo-2 summations of the various data
word bits, necessary to produce the code word bits is not done
in parallel but, rather, sequentially during six successive clock
periods, which define each code bit period. The serial opera- 60
tion is realizable by cycling the data word through shift re-

once every code bit period, while at the same time
the code bit number, in binary form, which is in shift register
30, is similarly cycled. During each of the first five clock
periods, the contents (binary states) of flip-flops A and P are 65
used, while during the sixth period the contents of A and E(are
utilized.

As previously stated, once the bit of a code word in the
biorthogonal code is obtained as the output of G, the cor-
responding bit of the code word in the comma free 70
biorthogonal code is obtained by mod-2 adding the output of
G with the output of Z (FIG. 4). This is achieved by flip-flop H
and gates 66,67 and-f$,&front of it.

After a complete code word is generated during a succes-
sion of 32 code bit periods, flip-flop J is set in the last clock bit 75

40

50

Although particular embodimeits of the invention have
been described and illustrated herein, it is recognized that
modifications and variations may readily occur to those skilled
in the art and, consequently, it is intended that the claims be
interpreted to cover such modifications and equivalents.

1 claim:
1. An encoder of the type for converting an m-bit data word

into a corresponding n-bit code word herein n = 2 tmll), I), the
encoder 2

clock means for defining m clock periods during each of a
sequence of n code bit periods;

first means for storing said m-bit data word and for cycling
said data word therethrough during the m clock periods
of each code bit period;

second means for storing, during each code bit period, a
code bit number in binary form corresponding to the
code bit in said sequence to be produced, and for cycling
said number therethrough during each code bit period;
and

control means coupled to said first and second means for
utilizing the contents of parts thereof during each of said
m clock periods, defined by said clock means to provide
at the end of each code bit period a code bit in said n-bit
code word, as a function of the data word and the binary
representation of the code bit number in said second
means.

2. The encoder as recited in claim B wherein said second
means comprises a shift register of m-l stages and said first
means comprises and m-stage shift register.

3. The encoder as recited in claim 2 wherein said control
means includes a single bistable element whose output at the
end of each code bit period is either a logic one or a logic zero
representing the code bit at the end of each code bit period.

4. The encoder as recited in claim 3 wherein said control
means includes a plurality of gating means, responsive to the
binary states of the least significant stages of the shift registers
of said first and second means during at least some of the
clock periods of each code bit periods for controlling the state
of said single bistable element.
9. The encoder as recited in claim 4 wherein m = 6, n = 32,

and said code bit period sequence includes periods 0 through
38 with said second means storing an 0 through 31 in binary
form in the 5-stage shift register of said second means during
the code bit periods 8 through 31 respectively, with said con-
trol means responding during each of the clock periods of
each code bit period to at least the state of the least significant
stage of said first means shift register to control the state of
said single bistable element as a function thereof.

6. The encoder as recited in claim 5 wherein said control
means include means for performing modulo-2 summation on
from one to five of the data word bits for controlling the final
state of said bistable element at the end of each code bit
period.

7. The encoder as recited in claim 6 wherein the six data

3,569,956
12

word bits are definable as a-J a, being the least significant
bit, and said control means incorporate in the modulo-2 sum-
mation said bit a, during all even-numbered code bit periods,
said b bit for the first two of each group of four code bit
periods, the first group starting with period 0, said c bit during
the first four of each group of eight code bit periods, said d bit
during the first eight of both groups of 16 code bit periods,
said e bit during the first 15 code bit periods B-iJ, and saidf
bit during each code bit period whose number in binary form
includes an even number of zeros.

83. The encoder as recited in claim I further including
generating means for generating during each of said code bit
periods 8-31 a different bit of a preselected 32-bit code
word, and means for logically combining, at the end of each
code bit period, the code bits from said generating means and
said single bistable element.

The encoder as recited in claim 8 wherein said control
means include means for performing modulo-2 summation on
from one to five of the data word bits for controlling the final
state of said bistable element at the end of each code bit

I@. The encoder as recited in claim 9 wherein the six data
word bits are definable as a-f, a being the teast significant bit,
and said control means incorporate in the modulo-2 summa-
tion said bit a, during all even-numbered code bit periods, said

10 b bit for the first two of each group of four code bit periods,
the first group starting with period @, said c bit during the first
four of each group of eight code bit periods, said d bit during
the first eight of both groups of 16 code bit periods, said e bit
during the first 15 code bit periods @-IS, and saidfbit during

15 each code bit period whose number in binary form includes an
even number of zeros.

5 period.

20

25

30

35

40

45

50

55

60

65

70

